Preprints

  • P. Jorgensen, K. H. Neeb, G. Olafsson, Reflection positive affine actions and stochastic processes, (ArXiv.org)
  • K. H. Neeb, G. Olafsson, KMS conditions, standard real subspaces and reflection positivitiy on the circle group, (ArXiv.org)
  • M. Herbst, K. H. Neeb, On the First Order Cohomology of Infinite-Dimensional Unitary Groups, (ArXiv.org)
  • T. Marquis, K. H. Neeb, Smooth topological groups, (ArXiv.org)
  • K. H. Neeb, M. Yousofzadeh, Current superalgebras and unitary representations, (ArXiv.org)
  • K. H. Neeb, On the geometry of standard subspaces, (ArXiv.org)
  • D. Beltita, K. H. Neeb, H. Grundling, Covariant representations for singular actions on C*-algebras, (ArXiv.org)

Accepted for Publication

  • Bas Janssens, K. H. Neeb, Projective unitary representations of infinite dimensional Lie groups,  to appear in Kyoto Math. Journal, (Opens external link in new windowArXiv.org)
  • Bas Janssens, K. H. Neeb, Norm continuous unitary representations of Lie algebras of smooth sections, accepted for International Math. Res. Notices, (ArXiv.org)
  • K. H. Neeb, Kaehler Geometry, Momentum Maps and Convex Sets, to appear in YMSC Lecture Notes Series, (ArXiv.org)
  • T. Marquis, K. H. Neeb, Positive energy representations of double extensions of Hilbert loop algebras,  to appear in Journal of the Math. Society of Japan,  (ArXiv.org)
  • K. H. Neeb, G. Olafsson, Antiunitary representations and modular theory, erscheint in "50th Sophus Lie Seminar", Eds. K. Grabowska, J. Grabowski, A. Fialowski and K.-H. Neeb; Banach Center Publications; (ArXiv.org)

2017

  • K.-H. Neeb, H. Salmasian, C. Zellner, Smoothing operators and $C^*$-algebras for infinite dimensional Lie groups, International Journal of Mathematics 28:5 (2017), (ArXiv.org)
  • H. Glöckner, K. H. Neeb, Diffeomorphism groups of compact convex sets, . Indag. Math. 28:4 (2017), 760-783, (ArXiv.org)
  • P. Jorgensen, K. H. Neeb, G. Olafsson, Reflection positivity on real intervals, Semigroup Forum, online 2017, (ArXiv.org)
  • T. Marquis, K. H. Neeb, Isomorphisms of twisted Hilbert loop algebras, Can. J. Math. 69:2 (2017), 453-480, (ArXiv.org)
  • K. H. Neeb, Bounded and semi-bounded representations of infinite dimensional Lie Groups, in "Representation Theory -- Current Trends and Perspectives", Eds. P. Littelmann et al, European Math. Society, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2017, pp 541-563, (ArXiv.org)

2016

  • P. E. T. Jorgensen, K. H. Neeb, G. Olafsson, Reflection positive stochastic processes indexed by Lie groups, SIGMA 12(2016), paper 058, 49 pp, (ArXiv.org)
  • G. van Dijk, K. H. Neeb, H. Salmasian, C. Zellner, On the characterization of trace class representations and Schwartz operators, J. Lie Theory 26(2016), 787-805,  (ArXiv.org)
  • K. H. Neeb, H. Salmasian, Crossed product algebras and direct integral decomposition for Lie supergroups, Pacific J. Math., 282:1 (2016), 213-232
  • T. Marquis, K.-H. Neeb, Positive energy representations for locally finite split Lie algebras, International Math. Res. Notices, 21 (2016), 6689-6712, (ArXiv.org)
  • D. Beltita, K. H. Neeb, Polynomial representations of $C^*$-algebras and their applications, Integral equations and operator theory, 86 (2016), 545-578, (ArXiv.org)
  • Bas Janssens, K. H. Neeb, Momentum Maps for smooth projective unitary representations, in "Geometric Methods in Physics. XXXIV Workshop 2015", Trends in Mathematics; Birkhäuser Verlag, 2016, 115-127, (ArXiv.org)

2015

  • Daniel Beltita, K. H. Neeb, Nonlinear completely positive maps and dilation theory for real involutive algebra, 'Integral Equations and Operator Theory', 83:4 (2015), 517-562, (Opens external link in new windowArXiv.org)
  • S. Azam, K. H. Neeb, Finite dimensional compact and unitary Lie superalgebras, 'Journal for Pure and Applied Algebra', 219:10 (2015), 4422-4440, (Opens external link in new windowArXiv.org)
  • K.-H. Neeb, H. Salmasian, C. Zellner, On an invariance property of the space of smooth vectors, Kyoto J. Math. 55:3 (2015), 501-515, ( Opens external link in new windowArXiv.org)
  • S. Merigon, K. H. Neeb, G. Olafsson, Integrability of unitary representations on reproducing kernel spaces, Representation theory 19 (2015), 24-55, (Opens external link in new windowArXiv.org)
  • K .-H. Neeb, H. Sahlmann, T. Thiemann, Weak Poisson structures on infinite dimensional manifolds and hamiltonian actions, accepted for 'Geometry, Integrability and Quantization' in "Lie Theory and Its Applications in Physics", V. Dobrev, ed., Springer Proceedings in Mathematics & Statistics, Springer, 2015, ( Opens external link in new windowArXiv.org)
  • K. H. Neeb, G. Olafsson, Reflection positivity for the circle group, accepted for Proceedings of the 30th International Colloquium on Group Theoretical Methods, Journal of Physics: Conference Series 597 (2015), 012004, (Opens external link in new windowArXiv.org)
  • K. H. Neeb, G. Olafsson, Reflection positive one-parameter groups and dilations, Complex Analysis and Operator Theory, 9:3 (2015), 653-721, (ArXiv.org)

2014

  • G. Hofmann, K.-H. Neeb, On convex hulls of orbits of Coxeter groups and Weyl groups, Münster Journal of Mathematics, 7 (2014), 463-487, (ArXiv.org)
  • K. H. Neeb, G. Olafsson, Reflection positivity and conformal symmetry, J. Funct. Anal. 266 (2014), no. 4, 2174-2224, (ArXiv.org)
  • K. H. Neeb, Semibounded unitary representations of double extensions of Hilbert-Loop groups, Ann. Inst. Fourier 64:5 (2014), 1823-1892, (ArXiv.org)
  • K. H. Neeb, Positive energy representations and continuity of projective representations for general topological groups, Glasgow Math. Journal 56 (2014), 295-316. (Opens external link in new windowArXiv.org)
  • H. Grundling, K. H. Neeb, Crossed products of C*-algebras for singluar actions, J. Funct. Anal. 266:8 (2014), 5199-5269, (Opens external link in new windowArXiv.org)
  • K. H. Neeb, Unitary representations of Unitary Groups, Developments and Retrospectives in Lie Theory, Eds. G. Mason, I. Penkov, J. Wolf, Series 'Developments in Math.' Vol. 37, Springer, 2014, 197-243, Opens external link in new window(arXiv.org)
  • K. H. Neeb, H. Salmasian, Classification of positive energy representations of the Virasoro group, Internat. Math. Research Notices, 2014; rnu197, 37 pages; doi:10.1093/imrn/rnu197, (arXiv.org).

2013

  • K. H. Neeb, H. Salmasian, Positive definite superfunctions and unitary representations of Lie supergroups, Transformation Groups 18:3 (2013), 803-844, (ArXiv.org)
  • K. H. Neeb, F. Wagemann, Ch. Wockel, Making lifting obstructions explicit, Proceedings of the London Math. Soc. (3) 106:3 (2013), 589-620, (ArXiv.org)
  • K. H. Neeb, Ch. Zellner, Oscillator algebras with semi-equicontinuous coadjoint orbits, Differential Geometry and its Applications 31:2 (2013), 268-283, (ArXiv.org)
  • K.-H. Neeb, Holomorphic Realization of Unitary Representations of Banach--Lie Groups in "Lie Groups: Structure, Actions, and Representations", A. Huckleberry (Editor), Progress in Math. 306 (2013), 185-223, (ArXiv.org)
  • K. H. Neeb, H. Salmasian, Differentiable vectors and unitary representations of Frechet--Lie supergroups, Mathematische Zeitschrift, 275:1 (2013), 419-451, (ArXiv.org)
  • H. Grundling, K.-H. Neeb, Infinite Tensor Products of C_0(R): Towards a Group Algebra for R^\infty, J. Operator Theory 70:2 (2013), 311-353, doi: 10.7900/jot.2011aug22.1930, ( ArXiv.org)

2012

  • H. Glöckner, K.-H. Neeb, When unit groups of continuous inverse algebras are regular Lie groups , Studia Math. 211:2 (2012), 95-109,  (ArXiv.org)
  • D. Beltita, K.-H. Neeb, Schur--Weyl Theory for C-star algebras, Math. Nachrichten 285, No. 10 (2012), 1170-1198 (ArXiv.org)
  • K.-H. Neeb, Semibounded representations of hermitian Lie groups, Travaux mathematiques, 21 (2012), 29-109, (ArXiv.org)
  • S. Merigon, K.-H. Neeb, Analytic extension techniques for unitary representations of Banach-Lie groups, Int. Math. Res. Notices, 18 (2012), 4260-4300, (ArXiv.org)
  • S. Merigon, K.-H. Neeb, H. Salmasian, Categories of unitary representations of Banach-Lie supergroups and restriction functors, Pacific J. Math. 257 (2012), no. 2, 431-469, (ArXiv.org)

2011

  • K.-H. Neeb, On Analytic Vectors for Unitary Representations of Infinite Dimensional Lie Groups, Ann. Inst. Fourier, 61:5 (2011), 1441-1476; (ArXiv.org)
  • K.-H. Neeb, H. Seppänen, Borel--Weil Theory for Groups over Commutative Banach Algebras, J. reine angew. Math. 655 (2011), 165-187, ( ArXiv.org
  • K.-H. Neeb, Lie groups of bundle automorphisms and their extensions, in "Developments and trends in infinite dimensional Lie theory'', Eds. K.-H. Neeb and A. Pianzola, Progress in Math., Birkhäuser Verlag, 2011, 281--338. ( ArXiv.org)
  • K.-H. Neeb, H. Salmasian, Lie supergroups, unitary representations, and invariant cones, "Supersymmetry in Mathematics and Physics'', R. Fioresi, S. Ferrara and V. S. Varadarajan, Eds., Lect. Notes in Math. 2027, 2011, 195--239. (ArXiv.org)

2010

  • K.-H. Neeb, On Differentiable Vectors for Representations of Infinite Dimensional Lie Groups, J. Funct. Anal. 259 (2010), 2814--2855, (ArXiv.org)
  • K.-H. Neeb, Semibounded representations and invariant cones in infinite dimensional Lie algebras, Confluentes Math. 2:1 (2010), 37--134, (ArXiv.org)
  • H. Grundling, K.-H. Neeb, Localization via Automorphisms of the CARs. Local gauge invariance, Letters Math. Phys. 93 (2010), 169--185. ( ArXiv.org)
  • D. Beltita, K.-H. Neeb, Geometric characterization of hermitian algebras with continuous inversion, Bulletin of the Australian Math.l Soc. 81 (2010), 96--113. ( ArXiv.org)
  • K.-H. Neeb, Unitary highest weight modules of locally affine Lie algebras, in ``Proceedings of the Workshop on Quantum Affine Algebras, Extended Affine Lie Algebras and Applications (Banff, 2008)'', Eds. Y. Gao et al, Contemporary Math. 506, 2010, Amer. Math. Soc., 227--262, ( ArXiv.org)
  • C. Müller, K.-H. Neeb, H. Seppänen, Borel-Weil Theory for Root Graded Banach-Lie Groups, International Mathematics Research Notices 5 (2010), 783--823. ( ArXiv.org)
  • K.-H. Neeb, Vizman, C., An abstract setting for hamiltonian actions, Monatshefte für Math. 159:3 (2010), 261--288. ( ArXiv.org)

2009

  • K.-H. Neeb, Semibounded unitary representations of infinite-dimensional Lie groups, in ``Infinite Dimensional Harmonic Analysis IV'', Eds. J. Hilgert et al, World Scientific, 2009; 209--222. (ArXiv.org)
  • H. Grundling, K.-H. Neeb, Full regularity for a C*-algebra of the Canonical Commutation Relations, Reviews in Math. Physics 21:5 (2009), 587--613. ( ArXiv.org)
  • K.-H. Neeb, Chr. Wockel, Central extensions of groups of sections, Annals of Global Analysis and Geometry 36:4 (2009), 381--418. ( ArXiv.org)
  • J. An, K.-H. Neeb, An implicit function theorem for Banach spaces and some applications, Math. Zeit. 262:3 (2009), 627--643. ( ArXiv.org)
  • K. H. Hofmann, K.-H. Neeb, Pro-Lie groups which are infinite dimensional Lie groups, Math. Proc. of Cambr. Phil. Soc. 146 (2009), 351--378. ( ArXiv.org)

2008

  • D. Beltita, K.-H. Neeb, A non-smooth continuous unitary representation of a Banach-Lie group, J. Lie Theory 18 (2008), 933-936. ( ArXiv.org)
  • D. Beltita, K.-H. Neeb, Finite-dimensional Lie subalgebras of algebras with continuous inversion, Studia Math. 185 (2008), 249--262. ( ArXiv.org)
  • K.-H. Neeb, A complex semigroup approach to group algebras of infinite dimensional Lie groups, Semigroup Forum 77 (2008), 5--35. (ArXiv.org)
  • K.-H. Neeb, Lie group extensions associated to projective modules of continuous inverse algebras, in "Proceedings of the Winter School on Geometry and Physics in Srni, 2008'', Archivum Mathematicum (Brno) 44 (2008), 339--363. ( ArXiv.org)
  • Y. Billig, K.-H. Neeb, On the cohomology of vector fields on parallelizable manifolds, Ann. Inst. Fourier 58 (2008), 1937--1982. ( ArXiv.org)
  • K. H. Hofmann, K.-H. Neeb, Solvable Subgroups of Locally Compact Groups, (ArXiv.org)
  • M. Jotz, K.-H. Neeb, Closedness of the tangent spaces to the orbits of proper actions, J. Lie Theory 18:3 (2008), 517--521. ( ArXiv.org)
  • K.-H. Neeb, On the classification of rational quantum tori and the structure of their automorphism groups, Canadian Math. Bulletin 46:4 (2008), 597--616. ( ArXiv.org)
  • K.-H. Neeb, F. Wagemann, The second cohomology of current algebras of general Lie algebras, Canadian J. Math. 60:4 (2008), 892--922. ( ArXiv.org)
  • K.-H. Neeb, F. Wagemann, Lie group structures on groups of smooth and holomorphic maps, Geom. Dedicata 134 (2008), 17--60. ( ArXiv.org)
  • A. Abouqateb, K.-H. Neeb, Integration of locally exponential Lie algebras of vector fields, Ann. Global Anal. Geom. 33:1 (2008), 89--100. (pdf)

2007

  • R. Gramlich, G. Hofmann, K.-H. Neeb, Semi-edges, reflections and Coxeter groups, Transactions of the Amer. Math. Soc. 359 (2007), 3647-3668. ( ArXiv.org)

2006

  • Neeb, K.-H., Lie algebra extensions and higher order cocycles, J. Geom. Symmetry Phys. 5 (2006), 48--74. (pdf)
  • Neeb, K.-H., Ørsted, B. A topological Maslov index for 3-graded Lie groups, Journal of Funct. Anal. 233 (2006), 426-477.(pdf)
  • Neeb, K.-H., Non-abelian extensions of infinite-dimensional Lie groups, Ann. Inst. Fourier 56 (2006), 209-271. ( ArXiv.org)
  • Neeb, K.-H., Non-abelian extensions of topological Lie algebras, Communications in Algebra 34 (2006), 991-1041. ( ArXiv.org)
  • Clerc, J.-L., Neeb, K.-H., On triples in the Shilov boundaries of bounded symmetric domains, Transformation Groups 11:3 (2006), 387--426.(pdf)
  • Neeb, K.-H., Towards a Lie theory of locally convex groups, Jap. J. Math., 2006, 291-468. ( Opens external link in new windowArXiv.org)

2005

  • Neeb, K.-H., Derivations of locally simple Lie algebras, J. Lie Theory 15 (2005), 589-594. (pdf)
  • Bertram, W., Neeb, K.-H., Projective completions of Jordan pairs, Part II, Geom. Dedicata 112:1 (2005), 75-115. ( ArXiv.org)

2004

  • Neeb, K.-H., Abelian extensions of infinite-dimensional Lie groups, Travaux mathématiques 15 (2004), 69-194. (ArXiv.org)
  • Bertram, W., Glöckner, H., Neeb, K.-H., Differential calculus in manifolds over general rings, Expositiones Math. 22 (2004), 213-282.(pdf)
  • Neeb, K.H., Current groups for non-compact manifolds and their central extensions, in Infinite dimensional groups and manifolds , Edited by Tilmann Wurzbacher, IRMA Lectures in Mathematics and Theoretical Physics 5, de Gruyter Verlag, Berlin, 2004; 109-183. (pdf)
  • Neeb, K.-H., Infinite-dimensional Lie groups and their representations, in Lie Theory: Lie Algebras and Representations , Progress in Math. 228, Ed. J. P. Anker, B. Ørsted, Birkhäuser Verlag, 2004. (pdf)
  • W. Bertram, K.-H. Neeb, Projective completions of Jordan pairs, Part I. The generalized projective geometry of a Lie algebra, J. of Algebra 277:2 (2004), 474-519. ArXiv.org)

2003

  • Neeb, K.-H., Glöckner, G., Banach-Lie quotients, enlargibility, and universal complexifications, J. reine angew. Math. 560 (2003), 1-28. (pdf)
  • Neeb, K.-H., Maier, P., Central extensions of current groups , Mathematische Annalen 326:2 (2003), 367-415. (pdf)
  • Neeb, H.-H., Vizman, C., Flux homomorphisms and principal bundles over infinite-dimensional manifolds, Monatshefte für Math. 139 (2003), 309-333. (pdf)
  • Neeb, K.-H., Penkov, I., On Cartan subalgebras of gl ∞, Canadian Math. Bulletin. 46:4 (2003), 597-616. (pdf)
  • Neeb, K.-H., Locally convex root graded Lie algebras, Travaux mathémathiques 14 (2003), 25-120. (pdf)
  • Neeb, K.-H., Wagemann, F. The universal central extension of the holomorphic current algebra, manuscripta math. 112:4 (2003), 441-458. (pdf)

2002

  • K.-H. Neeb, Classical Hilbert-Lie groups, their extensions and their homotopy groups, in "Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups", Eds. A. Strasburger et al., Banach Center Publications 55, Warszawa 2002; 87-151
  • K.-H. Neeb, A Cartan-Hadamard Theorem for Banach-Finsler Manifolds, Geometriae Dedicata 95 (2002), 115-156
  • K.-H. Neeb, Universal central extensions of Lie groups, Acta Appl. Math. 73:1,2 (2002), 175-219
  • K.-H. Neeb, Central extensions of infinite-dimensional Lie groups, Annales de l'Inst. Fourier 52 (2002), 1365-1442
  • B. Krötz, K.-H. Neeb, Unitary spherical highest weight representations, Trans. Amer. Math. Soc. 354:3 (2002), 1233-1264
  • K.-H. Neeb, B. Orsted, Representations in L^2-spaces on infinite-dimensional symmetric cones, J. Funct. Anal. 190 (2002), 133-178

2001

  • K.-H. Neeb, Locally finite Lie algebras with unitary highest weight representations, manuscripta math. 104:3 (2001), 343-358  
  • K.-H. Neeb, N. Stumme, On the classification of locally finite split simple Lie algebras, J. reine angew. Math. 533 (2001), 25-53
  • B. Kürner, K.-H. Neeb, Invariant symmetric bilinear forms for reflection groups, J. Geometry 71 (2001), 99-127
  • J. Hilgert, K.-H. Neeb, Vector-valued Riesz distributions on euclidian Jordan algebras, J. Geom. Analysis 11:1 (2001), 43-75
  • B. Krötz, K.-H. Neeb, G. Olafsson, Spherical functions on mixed symmetric spaces, J. Representation Theory 5 (2001), 43-92
  • K.-H. Neeb, Compressions of infinite-dimensional bounded symmetric domains, Semigroup Forum 63:1 (2001), 71-105 
  • K.-H. Neeb, Representations of infinite dimensional groups, in "Infinite Dimensional Kähler Manifolds", Eds. A. Huckleberry, T. Wurzbacher, DMV-Seminar 31, Birkhäuser Verlag, 2001; 131-178

2000

  • K.-H. Neeb, Invariant orders on Lie groups and coverings of ordered homogeneous spaces, Monatshefte für Math. 131:2 (2000), 123-153
  • K.-H. Neeb, Smooth vectors for highest weight representations, Glasgow Math. J. 42 (2000), 469-477 
  • K.-H. Neeb, Representation theory and convexity, Transformation Groups 5:4 (2000), 325-350  
  • K.-H. Neeb, Integrable roots in split graded Lie algebras, J. Algebra  225 (2000), 534-580
  • K.-H. Neeb, D. Pickrell, Supplements on the papers entitled "On a Theorem of S. Banach" and "The separable representations of U(H)", J. Lie Theory 10 (2000), 107-109

1999

  • K.-H. Neeb, On the complex geometry of invariant domains in complexified symmetric spaces, Annales de l'Inst. Fourier  49:1 (1999), 177-225 
  • J. Hilgert, K.-H. Neeb, Positive definite spherical functions on Olshanski spaces, Trans. Amer. Math. Soc. 352:3 (1999), 1345-1380

1998

  • K.-H. Neeb, Holomorphic highest weight representations of infinite dimensional complex classical groups, J. reine angew. Math. 497 (1998), 171-222
  • K.-H. Neeb, B. Oersted, Unitary highest weight representations in Hilbert spaces of holomorphic functions on infinite dimensional domains, J. Funct. Anal. 156 (1998), 263-300
  • J. Hilgert, K.-H. Neeb, Poisson-Lie groups and non-linear convexity theorems, Math. Nachrichten 191 (1998), 153-187
  • K.-H. Neeb, On the complex and convex geometry of Olshanski semigroups, Annales de l'Inst. Fourier 48:1 (1998), 149-203
  • K.-H. Neeb, On weighted Hardy spaces on complex semigroups, Semigroup Forum  56 (1998), 392-417 
  • K.-H. Neeb, Operator-valued positive definite kernels on tubes, Monatshefte für Math. 126 (1998), 125-160

1997

  • K.-H. Neeb, On some classes of multiplicity free representations, manuscripta math. 92 (1997), 389-407  
  • K.-H. Neeb, On square integrable highest weight representations, Glasgow Math. J. 39 (1997), 295-321  
  • K.-H. Neeb, A general non-linear convexity theorem, Forum Math. 9 (1997), 613-640
  • K.-H. Neeb, Convexity properties of the coadjoint action of non-compact Lie groups, Math. Annalen 309 (1997), 625-661
  • B. Krötz, K.-H. Neeb, G. Olafsson, Spherical representations of mixed symmetric spaces, J. Representation Theory 1 (1997), 424-461
  • K.-H. Neeb, On a Theorem of S. Banach, J. Lie Theory 7:2 (1997), 293-300 

1996

  • K.-H. Neeb, Weakly exponential Lie groups, J. Algebra 179 (1996), 331-361
  • K.-H. Neeb, Coherent states, holomorphic extensions, and highest weight representations, Pac. J. Math. 174:2 (1996), 497-542 
  • J. Hilgert, K.-H. Neeb Spherical functions on Olshanski spaces, J. Funct. Anal 142:2 (1996), 446-493 
  • B. Krötz, K.-H. Neeb, On hyperbolic cones and mixed symmetric spaces, J. Lie Theory 6:1 (1996), 69-146
  • J. Hilgert, K.-H. Neeb, Orthogonal Lie algebras with cone potential, Comm. in Algebra 24:2 (1996), 433-444
  • K.-H. Neeb, Invariant convex sets and functions in Lie algebras, Semigroup Forum  53 (1996), 230-261
  • K.-H. Neeb, A note on central extensions of Lie groups, J. Lie Theory 6:2 (1996), 207-213
  • J. Hilgert, K.-H. Neeb, B. Oersted, Conal Heisenberg algebras and associated Hilbert spaces,  J. reine angew. Math. 474 (1996), 67-112
  • J. Hilgert, K.-H. Neeb, B. Oersted, Unitary highest weight representations via the orbit method I: the scalar case, Acta Appl. Math. 44 (1996), 151-184

1995

  • K.-H. Neeb, Kähler structures and convexity properties of coadjoint orbits, Forum Math. 7 (1995), 349-384
  • K.-H. Neeb,  On the convexity of the moment mapping for unitary highest weight representations, J. Funct. Anal. 127:2 (1995), 301-325
  • J. Hilgert, K.-H. Neeb, Compression semigroups of open orbits in complex manifolds, Arkiv för Math. 33 (1995), 293-322
  • D. Mittenhuber, K.-H. Neeb, On the exponential function of an ordered manifold with affine connection, Math. Zeitschrift 218 (1995), 1-23
  • J. Hilgert, K.-H. Neeb, Compression semigroups of open orbits on real flag manifolds, Monatshefte für Math. 119 (1995), 187-214
  • J. Hilgert, K.-H. Neeb, Maximality of compression semigroups, Semigroup Forum  50 (1995), 205-222
  • J. Hilgert, K.-H. Neeb,  Groupoid C^*-algebras of order compactified symmetric spaces, Jap. J. Math. 21:1 (1995), 117-188
  • J. Hilgert, K.-H. Neeb, Wiener-Hopf operators on ordered homogeneous spaces I, J. Funct. Anal. 132:1 (1995), 86-118
  • K.-H. Neeb, Holomorphic Representation Theory I, Math. Annalen 301 (1995), 155-181 
  • J. Hilgert, K.-H. Neeb, Symplectic convexity theorems, Lie semigroups, and unitary representations,  in "Semigroups in Algebra, Geometry, and Analysis", Eds. K. H. Hofmann et al.,  Expositions in Math. 20, de Gruyter, 1995, 201-240
  • K.-H. Neeb, Holomorphic representations of Olshanski semigroups,  in "Semigroups in Algebra, Geometry, and Analysis",  Expositions in Math. 20, Eds. K. H. Hofmann et al., de Gruyter, 1995, 241-271
  • K.-H. Neeb, K. H. Hofmann, Epimorphisms of C^*-algebras are surjective, Archiv der Mathematik 65 (1995), 134-137

1994

  • K.-H. Neeb, Representations of involutive semigroups, Semigroup Forum 48 (1994), 197-218
  • K.-H. Neeb, Contraction semigroups and representations, Forum Math. 6 (1994), 233-270
  • K.-H. Neeb, A convexity theorem for semisimple symmetric spaces, Pacific J. Math. 162:2 (1994), 305-349
  • J. Hilgert, K.-H. Neeb, W. Plank, Symplectic convexity theorems and coadjoint orbits, Compositio Math. 94 (1994), 129-180
  • K.-H. Neeb, The classification of Lie algebras with invariant cones, J. Lie Theory 4:2 (1994), 1-46
  • K.-H. Neeb, Holomorphic representation theory II, Acta. Math. 173 (1994), 103-133
  • J. Hilgert, K.-H. Neeb, B. Oersted, The geometry of nilpotent orbits of convex type in hermitean Lie algebras, J. Lie Theory 4:2 (1994), 185-235
  • K.-H. Neeb,  On closedness and simple connectedness of adjoint and coadjoint orbits, manuscripta math. 82 (1994), 51-65

1993

  • N. Dörr, K.-H. Neeb,  On wedges in Lie triple systems and ordered symmetric spaces, Geometriae Dedicata 46 (1993), 1-34 

1992

  • K.-H. Neeb, The duality between subsemigroups of Lie groups and monotone functions, Trans. Amer. Math. Soc. 329 (1992), 653-677
  • K.-H. Neeb,  On the fundamental group of a Lie semigroup, Glasgow Math.~J. 34 (1992), 379-394
  • K.-H. Neeb, On the foundations of Lie semigroups, J. reine angew. Math. 431 (1992), 165-189 

1991

  • K.-H. Neeb, Semigroups in the universal covering group of SL(2), Semigroup Forum 43 (1991), 33-43
  • K.-H. Neeb, Conal orders on homogeneous spaces, Inventiones mathematicae 134 (1991), 467-496
  • K.-H. Neeb, Monotone functions on symmetric spaces, Mathematische Annalen 291 (1991), 261-273
  • K.-H. Neeb, Objects dual to subsemigroups of groups, Monatshefte für Mathematik 122 (1991), 303-321

1990

  • K.-H. Neeb, Globality in semisimple Lie groups, Annales de l'Inst. Fourier 40 (1990), 493-536